DYNAMIC PROBLEM OF THERMOELASTICITY FOR A
HOLLOW CYLINDER
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We consider a dynamic problem of thermoelasticity for a hollow cylinder in which we
assume the heat propagation speed to be finite.

We consider a long hollow cylinder with an inner radius of 1 and an outer radius equal tol, which is
initially at zero temperature and to whose inner surface a constant temperature T, is suddenly applied. The
end sections of the cylinder are kept stationary. The inner and outer surfaces of the cylinder are assumed
to be stress free.

Thus we have a dynamic problem of thermoelasticity.

It was shown in [1] that for high temperature gradients in metals there is no classical correspondence
between the heat flow and the gradient. Therefore to solve a dynamic problemof thermoelasticity it is neces-
sary to employ a heat conduction equation which is hyperbolic, namely, one which takes into account the
finite speed of heat propagation [1, 2]:
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with the following boundary and initial conditions:
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In Egs. (1) and (2), with the exception of T(r,Fo), all quantities are dimensionless.

Using the method of finite integral transforms we can write the solution of the problem (1)~ (2) in the
form [3]
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and the v, are the roots of the characteristic equation
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We now determine the thermoelastic stresses in the cylinder. When the stressed state of a long
cylinder, which is in a state of plane strain, is axially symmetric, there is no displacement in the direction
of the angle ¢ and the relative elongation in the direction of the z axis can be taken to be constant., We take
it equal to zero. The radial displacement u depends only on r and Fo, i.e., u=u(r,Fo). Hooke's Law is
then expressed by the equations [4]
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The equation of motion may be written as [4]:
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Substituting the Egs. (4) into Eq. (5), we obtain

1 0%u *u 1 ou u oT
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Since the inner and outer surfaces of the cylinder are stress free, we see that 0, =0 on these surfaces.
Therefore the boundary conditions for Eq. (6) are as follows:

Qo p

— = —mT=0 for r=1 and r=I.
o l—p r : @)
The initial conditions are of the form
ou
“= ke o ®

We write the solution of Eq. (6) as the sum of a quasistatic term ¥ (r,Fo) and a dynamic term 6(r,Fo):
u(r, Fo)=v(r, Fo} + 8(r, Fo). (9)

The quasistatic term ¥ (r,Fo) must satisfy the equation
” 1 7 1 I .
L’ +T 1|>—72‘ Y —mT’ =0, (10)
where the primes indicate differentiation with respect to r, subject to the boundary conditions (7) in which
u(r,Fo) is to be replaced by y(r,Fo).
The solution of Eq. (10), satisfying the boundary conditions (7), has the form
_ . 11
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where

S T(p, Fo) pdp

1

T(, Fo) =
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denotes the weighted mean temperature of the cylinder with inner radius r.
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Substituting the solution (9) into Eq. (6), and taking Eq. (10) into account, we will have the following
equation for determining the dynamic term 6(r,Fo);

1 0% 0% 1 o8 0 I o
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The quasistatic term ¥ (r,Fo) satisfies the boundary conditions (7), therefore the dynamic term in the solu-
tion must satisfy the homogeneous boundary conditions
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and the initial conditions
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Solving the problem (12)-(14) by the method of characteristic functions, we obtain
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The characteristic values Ya (the frequencies of the free radial oscillations of the cylinder) are such
that

= 0=l (16)

£ (n) is a bounded function for n =1,2,...

Let us now calculate the quasistatic radial and tangential stresses. Substituting the expression for
P(r,Fo) from Eq. (11) into Eq. (4), we obtain expressions for the quasistatic stresses
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Let us determine O'rSt
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Evaluating Ugtas Fo— 0, we shall have

SET
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0 if  r>1.

Thus, as a consequence of the discontinuous nature of the given temperature change on the inner sur-
face of the cylinder ( r =1), where the temperature jumps from zero to T, the tangential stress oSt has a
discontinuity at r =1 (a "stationary" jump). Consequently, there ia a jump change in G(spt from zero to aET
/1—p.

However the radial stress oSt

T is a continuous function of r.

Substituting the dynamic term in the displacement u(r,Fo) from Eq. (15) into the expressions (4) for
the stresses, we obtain expressions for the dynamic stresses:
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The tangential stress % at r=1, as a result of the condition 0, =0, may be determined from the re-
lation

(19)
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If we let Fo— 0, then u(1,Fo) - 0, and from Eq. (20) we obtain
fim oo — —%ETo_
Fo-0 - l——,,l. (21)

From this and from Eq. (18) we see that the tangential stress Oy On the inner surface of the cylinder
coincides immediately, after the instantaneous heating, with the quasistatic tangential stress.

The solution of the problem (12)-(14) for the dynamic part of the solution u(r,Fo) was written in the
form of a series of the type

0, Fo) =D 8,0 W, () (1<r <D, e2)

n=1

where En(Fo) and Wn(r) may be obtained from the expressions (15). However, the series (22) converges
slowly for small values of Fo, i.e., immediately following the effect of the thermal shock. This is ex-
plained by the fact that the series (22) is known over the whole domain of variation for r (1=r =) whereas
the deformations are of a local nature, i.e., the displacement 0(r,Fo) is different from zero only in the
region 1 = r=1+cFo,0 < Fo < (]—1)/c, andiszero in the remaining part. In order to improve the conver-
gence of the solution of the problem (12)-(14) we exclude from the domain of the expansion of the solution

in a series of characteristic functions the undisturbed part, where the displacement 6(r,Fo) is equal tozero.

As a result, the thermal shock on the inner surface of the cylinder gives rise to an elastic cylindri-
cal wave, which at the time instant Fo is located at the radius 1 +cFo(0 < Fo <(—1)/c); moreover, at the
front of the wave the displacement 6(r,¥o) must be equal to zero.
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Taking this into account and also the fact that

o 0)_
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we have a boundary-value problem for determining 6(r,Fo) for the values ofthe time (0 < Fo <(I-1)/c):

2 1 08 0 1 ™
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B k=0 for r=1,
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0=0 for r=1L,

0= % =0 for Fo=090, (24)
dFo

where k =p/1—-u: L=1+cFo.

If we should need to find the displacement 6(r,Fo) for the time interval (0 < Fo = Fo*), where 0< Fo
<{I-1)/c, t is necessary to put L =1 + cFo*,

Solving the resulting problem by the method of characteristic functions, we obtain
8 (r, Fo) =2 8, (FoWs(r) (1<r <L, 0LFogFo*), (25)
n=1

where

Wi () =Y, _(vn %) -

and 6 (Fo) is determined from Egs. (5).
The characteristic values Y 2re such that
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where § =L-—-1.

Thus the solution of the problem (12)-(14) is given by a series of the form (25), defined only for the
disturbed (deformed) part of the cylinder (1 = r= 1 +cFo; 0<Fo <(I-1)/c).

The series (25) converges considerably faster than the series (22). Moreover, the terms of this
series have a simpler form, thereby making the numerical computations easier.

Thus the solution of the problem (6)-(8) for 0< Fo<{i-1)/c, taking Eqs. (9) and 25) into account, is
u(r, Fo) = (r, Fo)+ ¥ 8, (Fo) Wi (7). @7)
n==}|

where §(r,Fo) is determined by the expression (11) and represents the quasistatic part of the displacement
u({r,Fo). Representation of the solution of the problem (6)~(8) over the time interval 0<Fo<({I—1)/c as a
sum of a quasistatic part ¥(r,Fo) and a dynamic part 6(r,Fo) may be explained by the fact that heat in the
cylinder propagates with a speed Cq- which is less than the speed of propagation ¢ of the dilatational waves
in an elastic medium. Consequently, quasistatic stresses arise in the cylinder. Therefore, in order to
obtain the solution of the problem (6)-(8) it is necessary to augment the solution (25) by a quasistatic term.

The elastic cylindrical wave reaches the outer surface of the cylinder at the time instant Fo= (I —1)/c.
The wave is then reflected. To find the displacement in the case of the reflected wave we can use the solu~
tion (15) for Fo > (I—1)/c.
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NOTATION

M = (c/cq)
c=v21-p)/(1-2p).G/p is the dilatationalwave speed in an elastic medium;
is the heat propagation speed;

c
m=(1+wa/l-p

" is Poisson's ratio;

o is the thermal coefficient for linear expansion;
p is the density;

E is Young's modulus;

G is the shear modulus of elasticity;

Fo=at/I? is the Fourier number;

a is the thermal diffusivity;

t is the time;

Im(r), Yy (r), are the Bessel functions of the first and second kinds of order m.

LITERATURE CITED

A. V. Lykov, Analytical Heat Diffusion Theory, Academic Press, New York (1968).

M. D. Mikhailov, Inzh. Fiz. Zh., 16, No. 1 (1969).

V. N. Gavdzinskii, in:Heat Conduction Research Studies [in Russian], Nauka i Tekhnika, Minsk (1967).
H. Parkus, Nonstationary Thermal Stresses [Russian translation], Fizmatgiz, Moscow (1963).

NI R

918



